Two novel approaches for photometric redshift estimation based on SDSS and 2 MASS databases ∗

نویسندگان

  • Dan Wang
  • Yan-Xia Zhang
  • Chao Liu
  • Yong-Heng Zhao
چکیده

We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey databases. We probe the performances of SVMs and KR for different input patterns. Our experiments show that the more parameters considered, the accuracy doesn’t always increase, and only when appropriate parameters chosen, the accuracy can improve. Moreover for the two approaches, the best input pattern is different. With various parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods, are less than 0.03 and 0.02, respectively. Finally the strengths and weaknesses of these techniques are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Accurate Estimation for Astrophysical Problems in Large Databases

In this proposed thesis, I will develop efficient non-parametric methods for parameter estimation in large databases of high-dimensional, noisy data. Specifically, I plan to continue exploring the efficacy of the diffusion map method of data transformation, used in conjunction with the Nyström extension, in uncovering underlying structure in complicated, high-dimensional data sets. I will explo...

متن کامل

A Census of Object Types and Redshift Estimates in the SDSS Photometric Catalog from a Trained Decision-Tree Classifier

We have applied ClassX, an oblique decision tree classifier optimized for astronomical analysis, to the homogeneous multicolor imaging data base of the Sloan Digital Sky Survey (SDSS), training the software on subsets of SDSS objects whose nature is precisely known via spectroscopy. We find that the software, using photometric data only, correctly classifies a very large fraction of the objects...

متن کامل

Estimating Photometric Redshifts with Artificial Neural Networks

We calculate photometric redshifts from the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Galaxy Sample using artificial neural networks (ANNs). Different input sets based on various parameters (e.g. magnitude, color index, flux information) are explored. Mainly, parameters from broadband photometry are utilized and their performances in redshift prediction are compared. While any paramete...

متن کامل

The Redmapper Galaxy Cluster Catalog from Des Science Verification Data

We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to150 deg of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited and contains 786 clusters wi...

متن کامل

Feature importance for machine learning redshifts applied to SDSS galaxies

We present an analysis of importance feature selection applied to photometric redshift estimation using the machine learning architecture Decision Trees with the ensemble learning routine Adaboost (hereafter RDF). We select a list of 85 easily measured (or derived) photometric quantities (or ‘features’) and spectroscopic redshifts for almost two million galaxies from the Sloan Digital Sky Surve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006